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2.1 Introduction about the Crystallography 

Crystallography is the experimental science of determining the arrangement of atoms 

in the crystalline solids. Before the development of x-ray diffraction in crystallography, the 

study of crystals was based on physical measurements of their geometry. This involved 

measuring the angles of crystal faces, crystallographic axes and establishing the symmetry of 

the crystal. Crystallographic methods now depend on analysis of the diffraction patterns of a 

sample targeted by a beam of some type. X-rays are most commonly used, i.e., other beams 

used include electrons or neutrons.  
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2.1.1 Basic definitions  

There are some basic definitions to understand x-ray diffraction in crystallography: 

A crystal is defined as atoms arranged in a pattern periodic in three dimensions As 

such, crystals differ in a fundamental way from gases and liquids because the atomic 

arrangements in the latter do not possess the essential requirement of periodicity. Not all 

solids are crystalline, however; some are amorphous, like glass, and do not have any regular 

interior arrangement of atoms. 

Crystal structure is a set of atoms in space arranged in the crystal lattice. Crystals 

are composed of three-dimensional patterns. These patterns consist of atoms or groups of 

atoms which are arranged and repeated at regular intervals. By replacing each group of atoms 

by a representative point a crystal lattice is obtained. Thus, a crystal lattice is defined as an 

array of points in space so arranged that each point has identical surroundings. By 

“identical surroundings” we mean that the lattice of points, when viewed in a particular 

direction from one lattice point, would have exactly the same appearance when viewed in the 

same direction from any other lattice point. The crystal lattice can be thought of as an array 

of 'small boxes' infinitely repeating in all three directions. 

 

 

 

 

Fig. 1. 
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Unit cell is the smallest unit of volume (smallest box) that contains all the structural 

and symmetry information to build-up the structure of the lattice. The size and shape of the 

unit cell can be described by the three vectors x, y, and z drawn from one corner of the cell 

taken as origin. These vectors define the cell and are called the crystallographic axes of the 

cell. They may also be described in terms of their lengths (a, b, c) and the angles between 

them ( ). These lengths and angles are the lattice constants or lattice parameters of the 

unit cell. The whole set of points in the lattice can be produced by repeated action of the 

vectors a, b, c on one lattice point located at the origin. 

 

 

 

 

 

Fig.2. 

2.1.2 Crystal system and Bravias lattices 

 By giving special values to the axial lengths (a, b, and c) and angles ( ), we can 

produce unit cells of various shapes and therefore various kinds of point lattices, since the 

points of the lattice are located at the cell corners. It turns out that only seven different kinds 

of cells are necessary to include all the possible point lattices. These correspond to the seven 

crystal systems into which all crystals can be classified. These systems are listed in the 

following Table 
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Table 1: Crystal system and Bravias lattices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Seven different point lattices can be obtained simply by putting points at the corners of the 

unit cells of the seven crystal systems. However, there are other arrangements of points which 

fulfill the requirements of a point lattice. The French crystallographer Bravais worked on this 

problem and in 1848 demonstrated that there are fourteen possible point lattices and no more; 

this important result is commemorated by our use of the terms Bravais lattice and point 
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lattice as synonymous. In addition to Primitive lattice (P), i.e., lattice points on the cell 

corners only. There are three additional Bravais lattice: 

 Body-Centered (I): lattice points on the cell corners with one additional point at the center 

of the cell 

 Face-Centered (F): lattice points on the cell corners with one additional point at the center 

of each of the faces of the cell 

 Base-Centered (C): lattice points on the cell corners with one additional point at the center 

of each face of one pair of parallel faces of the cell (sometimes called end-centered). 

2.1.3 Lattice directions and planes 

 The direction of any line in a lattice may be described by first drawing a line through 

the origin parallel to the given line and then giving the coordinates of any point on the line 

through the origin.  

uvw are numbers that are related to coordinate systems, no commas between them and 

written in square brackets like [uvw], which are the indices of the direction of the line. u 

represents the vector parallel to the x-axis; v represents the vector parallel to the y-axis; w 

represents the vector parallel to the z-axis. Negative indices are written with a bar over the 

number, e.g., [ ]. 

 

 

 

 

Fig.3. 
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H.W.: In a cubic unit cell, draw correctly a vector with indices [146]. 

Miller indices are the orientation of a plane in a lattice and which are defined as the 

reciprocals of the fractional intercepts which the plane makes with the crystallographic axes. 

(hkl) is the Miller indices of a plane, where h represents the plane perpendicular to the x-axis; 

k represents the plane perpendicular to the y-axis; l represents the plane perpendicular to the 

z-axis. 

For example: from Fig.4, what are the Miller indices? 

Solution: the intercepts are x = , y = and z =  

Therefore,  ,  and  

The reciprocals of above numbers are and 1 

Multiply by 6, we get the following numbers: 2, 3, 6 

So that, the above numbers are the Miller indices of 

 the plane, where h=2, k=3, and l=6,  

which can be written as (2,3,6)                                                                Fig. 4. 

H.W.: Draw correctly the lattice planes from the following Miller indices (110), (220), 

(020) and (321). 

The directions of cubic system have the same indices are equivalent regardless of 

their order or sign, i.e., [100], [ 00], [010], [0 0], [001] and [00 ], which are called the 

family of direction of cubic system and can be written between angular brackets   

y 
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In non‐cubic systems such as orthorhombic ( ) and tetragonal ( ), 

directions that have the same indices are not necessarily equivalent. 

The various sets of planes in a lattice have various values of interplanar spacing (dhkl), 

i.e., interplanar spacing is the distance between the plane in the lattice. The interplanar 

spacing measured at right angles to the planes, is a function both of the Miller indices (hkl) 

and the lattice constants (a, b, c). The exact relation depends on the crystal system involved 

and for the cubic system takes on the relatively simple form: 

  for cubic system;  for tetragonal system 

H.W.: If the crystal system is cubic, calculate interplanar spacing for the plane (211). 

2.2 X-ray diffraction and Bragg’s law 

 Two geometrical facts are worth remembering:  

(1) The incident beam, the normal to the reflecting plane, and the diffracted beam are always 

coplanar. 

(2) The angle between the diffracted beam and the transmitted beam is always 2 . This is 

known as the diffraction angle, and it is this angle, rather than , which is usually measured 

experimentally. 

Diffraction in general occurs only when the wavelength of the wave motion is of the same 

order of magnitude as the repeat distance between scattering centers. This requirement 

follows from the Bragg law. Since  cannot exceed unity, which mean: 
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Therefore,  must be less than . For diffraction, the smallest value of n is 1. Therefore the 

condition for diffraction at any observable angle  2  is: 

 

For most crystals d ~ 3 Å this lead to λ ≤ 6 Å. For UV radiation λ ≈ 500 Å, whereas Cu Kα λ 

= 1.542 Å.  

The Bragg law may be written in the form: 

 

If the path AB + CD is a multiple of the x-ray wavelength λ, then two waves will give a 

constructive interference:  

 

 

 

 

 

 

 

Fig.5. 

2.3 X-ray spectroscopy 

 Experimentally, the Bragg law can be utilized in two ways. By using x-rays of known 

wavelength  and measuring , we can determine the spacing  of various planes in a 

crystal: this is structure analysis. Alternatively, we can use a crystal with planes of known 

spacing , measure , and thus determine the wavelength  of the radiation used: this is x-

ray spectroscopy. The essential features of an x-ray spectrometer are shown in the following 

Figure: 

1 

2 
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Fig.5. 

X-rays from the tube are incident on a crystal which may be set at any desired angle 

to the incident beam by rotation about an axis through O, the center of the spectrometer 

circle. Detector is a form of counter which measures the intensity of the diffracted x-rays; it 

can also be rotated about and set at any desired angular position. The crystal is usually cut or 

cleaved so that a particular set of reflecting planes of known spacing is parallel to its surface. 

In use, the crystal is positioned so that its reflecting planes make some particular angle  with 

the incident beam, and the detector is set at the corresponding angle 2 . The intensity of the 

diffracted beam is then measured and its wavelength calculated from the Bragg law, this 

procedure being repeated for various angles . It is in this way that curves such as in below 

Figure  

 

 

 

 

 

 

 

 

 

Fig.6. 
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W. H. Bragg designed and used the first x-ray spectrometer, and the Swedish 

physicist Siegbahn developed it into an instrument of very high precision. 

 

2.4 Diffraction directions 

 Referring to Fig.5, we see that various diffraction angles 2  , 2  , 2 , ... can be 

obtained from the (100) planes by using a beam incident at the correct angle ,  , , and 

producing first-, second-, third-, . . . order reflections. But diffraction can also be produced by 

the (110) planes, the (111) planes, the (213) planes, and so on. We obviously need a general 

relation which will predict the diffraction angle for any set of planes. This relation is obtained 

by combining the Bragg law and the plane-spacing equation applicable to the particular 

crystal involved. 

For example, if the crystal is cubic, then 

 

and  

 

Combining these equations, we have 

 

This equation predicts, for a particular incident wavelength  and a particular cubic crystal of 

unit cell size a, all the possible Bragg angles at which diffraction can occur from the planes 

(hkl). For (110) planes, for example, the above equation becomes 

 

If the crystal is tetragonal, with axes a and c, then the corresponding general equation is: 
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and similar equations can readily be obtained for the other crystal systems. In short, 

diffraction directions are determined solely by the shape and size of the unit cell. 

 

2.5 Diffraction methods 

Diffraction can occur whenever the Bragg law, , is satisfied. This 

equation puts very stringent conditions on  and  for any given crystal. With monochromatic 

radiation, an arbitrary setting of a single crystal in a beam of x-rays will not in general 

produce any diffracted beams. Some way of satisfying the Bragg law must be devised, and 

this can be done by continuously varying either  or  during the experiment. The ways in 

which these quantities are varied distinguish the three main diffraction methods: 

Diffraction methods   

Laue method Variable Fixed 

Rotating-crystal method Fixed Variable (in part) 

Powder method Fixed Variable 

 

2.5.1 Laue method 

A beam of white radiation, the continuous spectrum from an x-ray tube, is allowed to 

fall on a fixed single crystal. The Bragg angle  is therefore fixed for every set of planes in 

the crystal, and each set picks out and diffracts that particular wavelength which satisfies the 

Bragg law for the particular values of d and involved. Each diffracted beam thus has a 

different wavelength. 
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There are two variations of the Laue method, depending on the relative positions of 

source, crystal, and film. In each, the film is flat and placed perpendicular to the incident 

beam. The film in the transmission Laue method is placed behind the crystal so as to record 

the beams diffracted in the forward direction. This method is so called because the diffracted 

beams are partially transmitted through the crystal. In the back-reflection Laue method the 

film is placed between the crystal and the x-ray source, the incident beam passing through a 

hole in the film, and the beams diffracted in a backward direction are recorded. In either 

method, the diffracted beams form an array of spots on the film. This array of spots is 

commonly called a pattern. This method used to determination the symmetry, direction of the 

crystal and the shape of the unit cell. 

 

 

 

 

 

 

 

2.5.2 Rotating-crystal method 

 This method used to study the structure of the single crystal (shape, size of unit cell 

and the arrangement of the atoms inside the unit cell). A single crystal is mounted with one of 

its axes, or some important crystallographic direction, normal to a monochromatic x-ray 

beam. A cylindrical film is placed around it and the crystal is rotated about the chosen 

Fig. 7 
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direction, the axis of the film coinciding with the axis of rotation of the crystal. As the crystal 

rotates, a particular set of lattice planes will, for an instant, make the correct Bragg angle for 

reflection of the monochromatic incident beam, and at that instant a reflected beam will be 

formed. 

 

 

 

 

 

 

 

 

Fig.8. 

 

2.5.3 Powder method 

 The crystal to be examined is reduced to a very fine powder and placed in a beam of 

monochromatic x-rays. Each particle of the powder is a tiny crystal oriented at random with 

respect to the incident beam. Just by chance, some of the particles will be correctly oriented 

so that their (100) planes, for example, can reflect the incident beam. Other particles will be 

correctly oriented for (110) reflections, and so on. The result is that every set of lattice planes 

will be capable of reflection. The mass of powder is equivalent, in fact, to a single crystal 

rotated, not about one axis, but about all possible axes. Consider one particular hkl reflection. 
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One or more particles of powder will, by chance, be so oriented that their (hkl) planes make 

the correct Bragg angle for reflection; Fig. 9 shows one plane in this set and the diffracted 

beam formed. If this plane is now rotated about the incident beam as axis in such a way that  

is kept constant, then the reflected beam will travel over the surface of a cone, the axis of the 

cone coinciding with the transmitted beam. This method used to study the lattice constant and 

phase purity. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. 


